プラスチック成形加工学会第23回年次大会

単軸スクリュ押出機の一般化Hele-Shaw流れ定式化に基づく一貫FEM解析

Integrated FEM simulation based on generalized Hele-Shaw flow formulation for single screw extruder

2012/6/12

株式会社HASL

○谷藤 眞一郎
福澤 大輔
吉川 秀雄

AGENDA

□研究の背景

□成形現象の定量化モデル

□解析モデルの効率的作成法

ロテスト機を利用した検証解析

□複雑形状のミキシングエレメントを有する 単軸スクリュ押出機の一貫解析

口まとめ

口研究の背景

Table 1. Comparison of analysis method for single screw extruder

Method	Accuracy	Computational cost	Availability	Operability
3D	0	×	Δ	×
1D	×	Ο	Δ	0
2.5D	Δ	Δ	Ο	Δ

 $O: Good, \Delta: Moderate, \times : Bad$

Fig.2 Tadmor model ; melt film/solid bed interface

$$\delta = \Phi \sqrt{X}, \Phi = \sqrt{\frac{2\kappa_l (T_b - T_m) + \eta V_j^2}{V_{bx} \rho_l [C_s (T_m - T_s) + \lambda]}}$$
$$\frac{d}{dz} \left(\rho_s V_{sz} (H - \delta) X \right) = -\frac{V_{bx}}{2} \rho_l \Phi \sqrt{X}$$

④ 動的評価モデル

Fig.3 Lagrangian spherical melting model.

溶融体輸送領域

(5) Generalized Hele-Shaw formulation

Fig.4 Circulation flow in a cross section of the screw channel.

Fig.5 An efficient method for generating of the FEA model

Fig.6 FEA model generated from UV unwound mapping information.

ロテスト機を利用した検証解析

Fig.7 FEA model for experimental verification.

Table 2. Computational conditions

Material	LDPE		
Friction	Pellet/Barrel:0.35		
parameter	Pellet/Screw:0.25		
Screw rotational speed	20,60,100,140rpm		
Temperature	Barrel:180°C		
condition	Inlet:30°C		
Pressure condition	Inlet:0MPa,Outlet:0Mpa		

Fig.8 Predicted solid bed distributions

Fig.9 Experimental verification of predicted pressure distributions

□複雑形状のミキシングエレメントを有する 単軸スクリュ押出機の一貫解析

Fig.10 FEA model for a practical screw extruder with complicate mixing elements.

Table 2. Computational conditions

Material	HDPE (Power law fit)		
	Heat of Fusion: 201189 J/kg		
	Melt temperature:130°C		
Friction	Pellet/Barrel:0.35		
parameter	Pellet/Screw:0.25		
Screw rotational speed	100rpm		
Temperature	Barrel:170~200°C		
condition	Inlet:30°C		
Pressure condition	Inlet:0MPa,Outlet:0Mpa		

Fig.12 Predicted Temperature distribution (Min:30°C,Max:230°C)

Fig.13 Predicted residence time distribution (Min:0sec,Max:50sec)

Fig.14 Predicted solid bed distribution (Red:solid bed,Blue:melt pool)

Time sequence of particle's trajectory and diameter (Initial diameter : 5mm)

Animation 1: Lagrangian spherical melting model simulation (Initial particle's diameter:5mm)

Time sequence of particle's trajectory and diameter (Initial diameter:2mm)

Animation 2: Lagrangian spherical melting model simulation (Initial particle's diameter:2mm)

口まとめ

<u>成果:</u>

・スクリュ押出機内成形現象の古典的定量化モデルと一般化Hele-Shaw流れの定式化、動的溶融可塑化モデル、及びメッシュ生成技術 を併用することで効率的な解析法を構築した。

・実験検証解析を通じて解析結果の妥当性を検討した。

<u>今後の課題:</u>

・固体輸送領域、溶融可塑化領域の定量化モデルの精度向上

・検証解析の継続

・二軸スクリュ押出機に対する用途展開

