# HASL社製品改良成果資料(II) (発表用ダイジェスト版)

自由表面/界面形成状態の評価を目的とした熱流動問題 への当社製品の適応性向上について

2023/11/17

### 株式会社HASL



Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

## 自由表面/界面形成を伴う熱流動問題

## ①多層押出

FSM(Flat Simulator Multi), SSM(Spiral Simulator Multi)

## ② スロットコーティング

FS (Flat Simulator), SCS (Slot Coating Simulator)



FS3D(Multi Profile Simulator)



## ① 多層押出 逐次合流多層流動解析の安定性向上(FSM,SSM)



#### 3種5層逐次合流形式マルチマニフォールドダイ内多層熱流動解析

(E力分布, JCTIMES:精誠模具機械有限公司殿ご提供資料)

IPF Japan 2023, 2023/11/28(火) ~ 12/2(日) 5日間,幕張メッセ1~8ホール GSIクレオス, JCTIMES, JCM, 三井物産プラスチック共同出展,小間番号:80808 特許取得:①日本 6908904 号 ②米国 11,353,323 B1 ③米国 11,580,282 B2 ④中国 ZL 2022 1 0099936.9











Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved



 $|\eta_A,|\psi_A|>\eta_B,|\psi_B|$ 

界面包み込み現象 (Encapsulation Phenomenon)



多層合流断面の調整 (Feed block profile)

Problem solved with Art than Science







$$\eta_{B} = 1000Palls, \psi_{B} = -20Palls^{2},$$

$$Q_{B} = 2.5kg / h$$

$$\eta_{A} = 5000Palls, \psi_{A} = -40Palls^{2},$$

$$Q_{A} = 10kg / h$$

$$\eta_{B} = 5000Palls, \psi_{B} = -40Palls^{2},$$

$$Q_{B} = 2.5kg / h$$

$$\eta_{A} = 1000Palls, \psi_{A} = -20Palls^{2},$$

$$Q_{A} = 10kg / h$$

流動面内界面形成状態の予測結果 (ALE(Arbitrary Lagrangian Eulerian)法) 相対的に粘性の高い領域 は、流動幅を広くとり、低 速で運動する.





② スロットコーティング

### 技術開発の狙い

・Flat Simulator の用途拡大:mPa・sオーダの低粘性流体への対応

・Slot bead 形状, 流動状況, コーティング層厚の予測, プロセスの安定性評価



FS3D(Multi Profile Simulator)を利用したスロットコーティング試解析結果



### 低粘性流体への対応(慣性効果の考慮))

既往

新規

粘性応力=圧力勾配





参考文献 1) 非ニュートン流体における押出し金型内部流れの高効率・高精度 解析手法の開発と実用化 津田武明, 長島正幸, 穴澤朝彦, 長谷川富市 Nihon Reoroji Gakkai, 39,5,189(2011)



## テスト解析モデル

|      | Case study conditions |                |   |
|------|-----------------------|----------------|---|
| Case | Viscosity [Pa•s]      | Inertia effect |   |
| 1    | 1                     | Neglected      |   |
| 2    | 0.001                 | Neglected      | - |
| 3    | 0.001                 | Considered     |   |

Extrusion flow rate : 200 kg/h











・ニュートン流体の場合, 押出流量を共通とする条件下において慣性効果を無視すると, 粘度を変化させても流量配分分布は変化しない (Case1,2).

・慣性力を考慮すると、マニフォールド端部への流量配分が増加する(Case1,3).



### Slot Coating Simulator<sup>2),3)</sup> 機能

### 1) Meniscus形状とSlot bead 内流速分布の予測



#### 上流側 Meniscus & 流速分布の予測結果

下流側 Meniscus & 流速分布の予測結果

参考文献 2) 'A Review of Operating Limits in Slot Die Coating Process' X. Ding, J. Liu and T. A. L. Haris, , AIChE J., 2508-2524(2017) 3) 精密ウェットコーティングの基礎,山村方人,表面技術, Vol. 60, No.7, 2-7(2009)





### 3) プロセスの安定性評価 (Visco Capillary Coating Window, LFL: Low Flow Limit)



Visco Capillary Coating Window

吸引圧力には適正値がある。 吸引圧力が弱い(圧力が高い)と上流側ビードが破壊。 吸引圧力が強い(圧力が低い)と液漏れ。 Low Flow Limit

Ca数に応じて薄肉化の限界値が変化する. Ca数が低いほど薄肉化し易い.





参考文献 4) 瀧健太郎:博士論文(京都大学(2005))







## 溶融ポリマー/気体混合流体の物性の取り扱い



気液2相流のオーソドックスな考え方を踏襲すれば,

ポリマー/混合流体密度:

$$\rho_{PG} = \phi_P \rho_P + \phi_G \rho_G \cong \phi_P \rho_P = (1 - \phi_G) \rho_P \longrightarrow OK$$
  
$$\therefore \rho_P \Box \rho_G$$

ポリマー/混合流体粘度:

$$\eta_{PG} = \phi_P \eta_P + \phi_G \eta_G \cong \phi_P \eta_P = (1 - \phi_G) \eta_P \longrightarrow \mathbf{NG} ???$$

 $: \eta_P \square \eta_G$  溶融ポリマー/混合流体粘度の取 り扱いは良く分からない.



## 溶融ポリマー/気体混合流体の質量保存方程式 <sup>溶融ポリマー(非圧縮性流体)の質量保存則:</sup>

 $abla P_P = 0 \quad v_P$ :溶融ポリマーの流速度ベクトル

溶融ポリマー/気体混合流体(圧縮性流体)の質量保存則:

$$\nabla \mathbf{v}_{PG} = \begin{bmatrix} 1 \\ 1 - \phi_G \end{bmatrix} \mathbf{v}_{PG} \mathbf{v}_{PG} \mathbf{v}_{QG} \\ \mathbf{v}_{PG} : 溶融ポリマ - / 気体混合流体$$
の流速度ベクトル



## 発泡流動現象の支配方程式

流体支配方程式

運動方程式(定常ストークス方程式)  $\nabla \Box \boldsymbol{\tau}_{PG} = \nabla P_{PG}$ 構成方程式(ニュートン粘性法則)  $\boldsymbol{\tau}_{PG} = 2\eta_{PG}\boldsymbol{D}_{PG}$ 連続方程式(圧縮性)  $\nabla \Box \boldsymbol{v}_{PG} = \frac{1}{1 - \phi_C} \boldsymbol{v}_{PG} \Box \nabla \phi_G$ エネルギー方程式  $\rho_{PG}C_{PG}\boldsymbol{v}_{PG} \nabla T_{PG} = \nabla \left(\kappa_{PG} \nabla T_{PG}\right) + \eta_{PG} \dot{\gamma}_{PG}^{2}$ 

発泡現象支配方程式  
気泡径成長方程式  

$$\frac{DR}{Dt} = v_{PG} \square R = \frac{R}{4\eta_{P}} \left( P_{D} - P_{PG} - \frac{2\gamma}{R} \right)$$
物質収支式 (Han & Yoo モデル)  

$$\frac{D\left(P_{D}R^{3}\right)}{Dt} = v_{PG} \square \left(P_{D}R^{3}\right) = \kappa \left(P_{D0} - P_{D}\right)R + \frac{P_{D}R^{3}}{T} v_{PG} \square T,$$

$$\kappa = \frac{6(R_{g}T)Dk_{H}}{(-1 + \sqrt{1 + 2B})},$$

$$B = \frac{P_{D}R^{3} - P_{D0}R_{0}^{3}}{R^{3}R_{g}Tk_{H}(P_{D0} - P_{PG})}.$$

$$\frac{DR}{R^{3}R_{g}Tk_{H}(P_{D0} - P_{PG})}.$$

$$\frac{DR}{R^{3}R_{g}Tk_{H}(P_{D0} - P_{PG})}$$

$$\frac{DR}{R_{g}T} J(t')dt'$$
**気泡数密度方程式**  

$$\frac{Dn}{Dt} = v_{PG} \square N = J$$
**気泡核生成頻度モデル**  

$$J = f_{0} \left(\frac{2\gamma}{\pi m}\right)^{1/2} \exp\left(-\frac{16\pi F\gamma^{3}}{3k_{B}T(c/k_{H} - P_{C})^{2}}\right)cN_{A}$$



## テスト解析モデル

CO2発泡溶融ポリマーの円管押出解析モデル(軸対称解析モデル)





Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

## 計算収束性, 自由表面表現精度



反復計算サイクル数[-]

4MPa条件を除き計算収束性良好 (4MPa条件では若干の振動傾向)

ダイ流出口近傍の流速ベクトル分布(*P<sub>D</sub>*(0):4MPa)

#### 自由表面表現精度良好



## 1) 気泡発生開始点(気泡核生成頻度)

- ・発泡剤(CO2)濃度の低下に伴って気泡発生開始点は下流側にシフト.
- ·発泡剤(CO2)濃度の低下に伴って気泡核生成頻度も低下.



Number density [mm<sup>-3</sup>s<sup>-1</sup>]







Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

#### 表面(外径側)の気泡数密度が中心部より低い理由



'Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process ', Taki, K. ,*Chem. Eng. Sci.* **63** 3643–53(2008)より引用

Fig. 2-10 Effect of pressure release rate on bubble nucleation ( $PP/CO_2$ , 11MPa, 200°C). Arrows indicate the rise time of bubble nucleation,  $t_N$ , defined by Eq. (2.3).



外径側と中心軸上での流体の圧力降下は約 6MPaで共通.
外径側は低速の為,中心軸上と比較してダ イ流出口まで10倍以上の滞留時間を要する.
↓↓↓
中心軸上減圧速度>外径側減圧速度
(押出成形プロセスでは様々な 減圧速度条件が混在する)







#### 低濃度条件下で冷却(空冷)効果が顕著になる理由

低濃度条件では、気泡体積生成量が少なく、流体が 加速され難い.結果として高濃度条件と比較すると流 速が遅く、冷却時間が相対的に長くなるため、その効 果が相対的に表層側に顕れ易くなると考えられる(中 心側は熱対流効果によりほぼ等温状態).













## 精度検証(およその発泡倍率の計算は容易)

ヘンリー則





### まとめ <sub>成果</sub>

#### 多層押出関連

1) 逐次合流多層流動解析の安定性向上(FSM,SSM)

- 2) 層構成の汎用化(FSM)
- <u>スロットコーティング関連</u>
- 3) 低粘性流体への用途拡大(FS)
- 4) Slot Coating Simulator(SCS)の新規開発

#### <u> 発泡押出関連</u>

5) 発泡押出解析機能の新規実装(FS3D(Multi Profile Simulator))

### 今後の課題

- 1) PSM(Pseudo Encapsulation Model)の適応性向上
- 2) Slot Coating Simulator の機能改良とFlat Simulator との連携機能の整備
- 3) 発泡押出解析機能改良
- 4) 実験検証(多層押出, スロットコーティング, 発泡押出, 皆様, 是非, ご協力をお願いします.)

