Twin Screw Simulator(Ver.5.0.0) 改良成果資料(発表用ダイジェスト版)

HASL/Twin Screw Simulator (Ver.5.0.0)

Copyright© 2013- Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

2017/11/14 株式会社HASL

Copyright© 2010 Hyper Advanced Simulation Laboratory Co., Ltd. All Rights Reserved

① 脱揮/発泡解析機能新規実装

表面更新型脱揮解析モデル(Surface renewal model) 発泡解析モデル(Foaming model)

② CAD-STL インターフェイス機能改良

③ StructTetra 連携構造解析機能新規実装

① 脱揮/発泡解析機能新規実装

表面更新型脱揮解析モデル(Surface renewal model)*)

運用方法 : Template/Surface renewal model タブメニューで計算チェックボックスをチェック。 各種モデルパラメータ、環境条件を設定。

Analysis	Melting /Morophology model	Binary System Condition S	Set Foaming model	Surface renewal mode	
	🗹 Surface renewal (devolatilization model ca	lculation		
	SRM parameters				
	Volatile conce	ntration	50	ppm	
	Equilibrium vo	latile concentration	1	ppm	
	Diffusion coeff	icient	1E-10	m2/s	
	Model parame	ter	10		

*)Surface renewal modelについては、SSS(Ver.8.0.0)改良成果資料参照

*) 参考文献: George A. Latinen, "Devolatilization of viscous polymer systems", Advances in Chemistry, American Chemical society, 19,235-246(1962)

Volatile concentration (mol/m3)

発泡解析モデル(Foaming model)*)

運用方法:Template/Foaming model タブメニューで計算チェックボックスをチェック。 各種モデルパラメータ、環境条件を設定。

Analysis	Melting /Morophology model Bi	inary System Condition Set	Foaming model	Surface renewal model	• •	
	Foaming agent information					
	Molecular weight	44	g/mol			
	Surface tension coefficien	t 12.3	mJ/m2			
	Iniatial concentration	1265	mol/m3			
	Diffusion coefficient	8.07E-09	m2/s			
	Henry number	0.000115	mol/m3/F	Pa		
	Nucleation frequency model					
	F	0.014085				
	f0	3E-23				
	Jsh	0.0098	1/mm3			
	Diversion constant					
	Physylcal constant		-			
	Gas constant	8.314	J/mol/K			
	Avogadro constant	6.022E+23	/mol			
	Boltzmann constant	1.381E-23	m2kg/s2	/K		
	Computational parameters					
	Foaming model calculate	ation				
	Time increment	1E-05	sec			
	Calculation number	500000				
	Foaming start position (Z	-Cord.) 150	mm			

図4 新規実装 Foaming model タブメニュー

*)Foaming modelについては、SSS(Ver.8.0.0)改良成果資料参照 *)参考文献:瀧健太郎,"高分子材料の微細発泡成形挙動の可視化実験と計算機 シミュレーション",博士論文京都大学(2005)

<mark>気泡内圧</mark> (MPa)

7.8650E+000 5.1219E+000 3.1626E+000 2.7707E+000 1.9870E+000 1.5951E+000 7.0813E+000 6.2975E+000 1.0216E+001 8.6488E+000 7.4732E+000 6.6894E+000 5.5138E+000 4.3382E+000 9.8244E+000 9.4325E+000 9.0406E+000 8.2569E+000 5.9057E+000 4.7301E+000 2.3788E+000 1.0608E+001 3.9463E+000 3.5544E+000 1.1000E+001

気泡剤濃度 (mol/m³)

8.8213E+002 7.4291E+002 1.0214E+003 4.6446E+002 9.1694E+002 8.4733E+002 8.1252E+002 7.7771E+002 7.0810E+002 6.3849E+002 6.0368E+002 4.9927E+002 1.2650E+003 l.2302E+003 1.1954E+003 l.1606E+003 l.1258E+003 L.0910E+003 1.0562E+003 9.8655E+002 9.5174E+002 6.7330E+002 5.6888E+002 5.3407E+002 4.2965E+002

図6 気泡内圧と気泡剤濃度解析結果

② CAD-STL インターフェイス機能改良 ・テンプレート作成3D化スクリュ形状のCAD-STL file export機能 I) 従来通り、テンプレートで2.5D解析モデルを作成

図7 2.5D 解析モデルの作成

II) 新規実装されたFile/Stl file exportをプルダウン選択することにより、解析モデルメッシュをSTL情報に自動変換

図8 Stl file export プルダウンメニュー(新規実装機能)

・肉厚転写用CAD-STL file のAppend import 機能

図9 複数のファイルに個別に保存されたSTLファイル情報の追加入力

複数のSTLファイル情報を用いて更新した肉厚転写情報

図10 複数のSTLファイル情報を用いた肉厚情報の転写/更新

③ StructTetra 連携構造解析機能新規実装

III) テンプレート作成2.5D解析モデルのSTL変換情報をNetgenにインポート

IV) Netgenを利用して解析モデルを四面体(テトラ)ソリッド要素に自動分割

図12 Netgenを利用した解析モデルの自動要素分割

V) StructTetralに有限要素情報をインポートし、適切な荷重/拘束条件を設定

図13 StructTetra を利用した荷重/拘束条件の設定

VI) StructTetraを利用した構造解析 & 解析結果のポスト処理

当モデルの解析所要時間10sec未満!!!

図14 StructTetra を利用した荷重/拘束条件の設定

